Daha sonra tekrar İsviçre’ye dönerek 1683’ten itibaren Basel Üniversitesi'nde mekanik dersleri vermeye başladı. 1684'te Judith Stupanus ile evlendi ve iki çocukları oldu. Bu süreçte çok verimli bir araştırma kariyerine başladı. Yaptığı seyahatler ona döneminin ünlü matematikçileri ve bilim inanları ile hayatı boyunca sürdüreceği bir iletişim olanağı sundu. Bu süreçte matematikteki yeni gelişmeleri yakından takip etti. Christian Huygen’in “De ratiociniis in aleae ludo” ve Descartes’in “Geometrie” adlı yapıtları üzerinde çalıştı. 1684 ve 1689 yılları arasında Ars Conjectandi’yi oluşturacak sonuçların birçoğuna ulaştı.
1687'de Basel Üniversitesi'nde profesörlük görevine başladı. O zamana kadar kardeşi Johann Bernulli’yi matematik alanında çalıştırmaya başlamıştı. İki kardeş Leibniz’in 1684’te yayımlanan Nova Methodus pro Maximis, itemque Tangentibus adlı diferansiyel kalkülüs ile ilgili olan yayını üzerinde çalışmaya başladılar. Bunun haricinde von Tschinhaus’un yayınlarını da incelediler. Leibniz’in çalışmaları o zamanki matematikçiler için epey karmaşıktı. Bernoulliler bu kuramları anlamayı ve uygulamayı deneyen ilk kişilerdi. Jacob kardeşi ile el ele vererek kalkülüsün çeşitli uygulamaları üzerinde çalıştılar. Bu işbirliği Johann’ın matematiksel dehasının olgunlaşmaya başlamasıyla rekabete dönüştü. Birbirleriyle oldukça zor matematiksel problemler üzerinden mücadele ederek karşılıklı olarak yeteneklerini test etmeye başladılar. 1697’ye kadar aralarındaki ilişki tamamen yok oldu.
Jacob Bernoulli 1705’te hayatını kaybetti. Mezar taşı için bir logaritmik spiral figürü ve “Eadem mutata resurgo” (Değişmeme rağmen aynı şekilde yeniden yükseleceğim) sloganını seçmiştir. Mezarı “Basel Munster or Cathedral” inde bulunmaktadır. Aydaki bir kratere kardeşi Johann ve onun anısına Bernoulli adı verilmiştir.
Önemli Çalışmaları
Jacob Bernoulli’nin ilk önemli katkıları, 1685’te yayımlanan mantık ve cebrin paralelliği üzerine bir kitapçık, 1685’te yayımlanan olasılık ve 1687’de yayımlanan geometri üzerine çalışmalardır. Geometri üzerine yaptığı çalışmalar sonucunda herhangi bir üçgeni iki paralel doğru ile dört eşit parçaya bölünebileceğini göstermiştir.
1689’a kadar sonsuz seriler üzerine olan önemli çalışmalarını ve olasılıkta büyük sayılar yasası kuramını yayımlamıştır. Jacob Bernoulli 1682 ve 1704 yılları arasında sonsuz seriler üzerine beş adet bilimsel inceleme yazmıştır. Bunlardan ikisi Bernoulli’nin yeni bir keşif olarak düşündüğü ancak Mengoli tarafından 40 yıl önce kanıtlanan
Jacob Bernoulli’nin en özgün eseri Ars Conjectandi 1713 yılında Basel’de ölümünden 8 yıl sonra yayımlanmıştır. Öldüğünde bu yapıt henüz tamamlanmamış dahi olsa hâlâ olasılık kuramı için büyük bir öneme sahiptir. Kitapta Bernoulli, van Schooten, Leibniz ve Pretstet’in olasılık üzerine yaptığı çalışmaları incelemiştir. Bernoulli sayıları üstel işlev üzerine olan tartışmalarda görülür. Kitapta bir kişinin oynadığı çeşitli şans oyunlarında ne kadar kazanmasının beklendiğine dair birçok örnek yer almaktadır. Bernoulli denemeleri terimi buradan gelmektedir. Kitapta ayrıca olasılığın ne olduğuna dair ilginç görüşler bulunmaktadır:
“ …ölçülebilir kesinlik değeri olarak olasılık; gereklilik ve ihtimal; ahlak matematiksel beklentiye karşı; öncül ve soncul olasılık; oyuncular maharetlerine göre ayrıldığında kazanma olasılığı; bütün mevcut savların göz önüne alınması, bunların değerlendirilmesi ve hesaplanabilir değerlendirmesi; büyük sayılar kuralı…”
Matematiksel Sabit e’nin Bulunuşu
Bernoulli, matematiksel bir sabit olan e sayısını bileşke faiz ile ilgili olan ve ona aşağıdaki ifadenin değerini (e: sayısı ) bulmasını gerektiren bir soru üzerinde çalışırken keşfetti.
$1.00’lık bir banka hesabı yıllık yüzde 100 faiz ile açılıyor. Eğer faiz, yılsonunda, bir kere uygulanırsa para $2.00 olmaktadır. Ancak eğer faiz hesaplanıp yılda iki kez uygulanırsa (yüzde 50 olarak iki kez), $1.00 1.5 ile iki kez çarpılır, elde edilecek para $1.00×1.5² = $2.25 olur. Yılda dört kere hesaplanıp uygulanırsa (yüzde 25 olarak dört kez) elde edilecek para $1.00×1.254 = $2.4414... olmaktadır. Eğer bu faiz hesaplanıp aylık uygulanırsa elde edilecek para $1.00×(1.0833...)12 = $2.613035.... olmaktadır.
Bernoulli bu dizinin daha çok ve daha küçük bileşke aralıkları için bir limite yaklaştığını fark etti. Faizi haftalık hesaplayınca elde edilen para $ 2.692597…, günlük hesaplayınca ise $2.714567…, yani sadece 2 sent fazla olmaktadır. Bileşke aralığı olarak n kullanıldığında ve her aralık için 100%/n faizle, büyükn sayıları için elde edilen sayı e olarak bilinen sabittir. Yani, eğer sürekli bileşik faiz uygulanmaya devam edilirse hesap $2.7182818.... değerine ulaşacaktır. Daha genel olarak $1 ile açılan ve basit faiz ile (1+R) dolar değerine, ulaşan bir hesap sürekli bileşik faiz ile eR değerine ulaşacaktır.
Jacob Bernoulli’nin Mezarındaki Latince Yazının Tercümesi
“IACOBUS BERNOULLI
MATHEMATICUS INCOMPARABILIS
ACAD. BASIL.
VLTRA XVIII ANNOS PROF.
ACADEM. ITEM REGIAE PARIS. ET BEROLIN.
SOCIUS
EDITIS LUCUBRAT. INLUSTRIS.
MORBO CHRONICO
MENTE AD EXTREMUM INTEGRA
ANNO SALUT. MDCCV. D. XVI. AUGUSTI
AETATIS L. M. VII
EXTINCTUS
RESURRECT. PIOR. HIC PRAESTOLATUR
IUDITHA STUPANA
XX ANNOR. UXOR
CUM DUOBUS LIBERIS
MARITO ET PARENTI
EHEU DESIDERATISS.
H.M.P.”
“James Bernoulli, kıyaslanamaz matematikçi.
Basel Üniversitesi'nde 18 yıldan fazla süredir Profesör;
Berlin ve Paris Kraliyet Akademileri üyesi; yazıları ile ünlü.
Kronik bir hastalık yüzünden, sonuna kadar akıl sağlığı yerinde;
1705 yılının 16 Ağustos’unda 50 yaşının 7. Ayında öldü, yeniden dirilmeyi bekliyor.
Judith Stuphanus,
20 yıllık karısı,
Ve onun iki çocuğu çok özledikleri baba ve koca için bir anıt diktiler.”
0 yorum:
Yorum Gönder